Другие журналы
Сетевое издание Математика и математическое моделирование

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл. № ФС 77-61857. ISSN 2412-5911

Автоматическая генерация сложных пространственных траекторий БПЛА и синтез управлений

Математика и математическое моделирование # 01, февраль 2015
DOI: 10.7463/mathm.0115.0778000
Файл статьи: Mathm_Feb2015_001to017.pdf (848.26Кб)
авторы: Ткачев С. Б., Крищенко А. П., Канатников А. Н.

УДК 517.93

Россия,  МГТУ им. Н.Э. Баумана

Предложены метод и алгоритмы генерации сложных пространственных траекторий беспилотных летательных аппаратов (БПЛА), проходящих через заданную последовательность путевых точек в трехмерном пространстве.
Для расчетов используется нелинейная шестимерная модель движения центра масс БПЛА, в которой вектор состояния включает высоту, продольную дальность, боковое отклонение, а также траекторные координаты: путевую скорость, угол наклона траектории и угол курса. В качестве управлений рассматриваются продольная и поперечная перегрузки, а также угол между вектором поперечной перегрузки и вертикальной плоскостью, условно называемый углом крена.
Особенность рассматриваемой задачи в том, что в путевых точках заданы не только координаты, но и дополнительные условия, определяющие ориентацию вектора скорости в каждой точке (угол наклона траектории и угол курса), а также указаны либо времена прохождения либо путевые скорости. В стартовой путевой точке задан полный вектор состояния и определены управления.
Для построения пространственной траектории используется концепция обратных задач динамики, а также современные результаты математической теории управления нелинейными динамическими системами. Введением новых виртуальных управлений исходная система преобразуется в аффинную, т.е. линейную по управлению, а затем в систему регулярного канонического вида.
Если задано время перелета между двумя путевыми точками, соответствующий сегмент траектории проектируется с использованием полиномов пятой степени, зависящих от времени. Если время перелета не задано, то используется метод расчета траекторий как функций полной механической энергии. Этот метод приводит к построению траекторий, в которых энергия изменяется монотонно. Из отдельных сегментов с различной параметризацией собирается полная траектория.
Для полученной пространственной траектории рассчитываются программное и нелинейное стабилизирующее управления. Эффективность разработанных алгоритмов подтверждается результатами компьютерного моделирования.

Список литературы
  1. Яковлев К.С., Баскин Е.С. Графовые модели в задаче планирования траектории на плоскости // Искусственный интеллект и принятие решений. 2013. № 1. С. 5-12.
  2. De Luca F., Guglieri G. Advanced Graph Search Algorithms for Path Planning of Flight Vehicles // In: Recent Advances in Aircraft Technology / edited by R. Agarwal. InTech, 2012. P. 157-192. DOI: 10.5772/37033
  3. Алдошин Д.В. Планирование пространственных маршрутов для БПЛА с использованием поиска на графах // Молодежный научно-технический вестник. МГТУ им. Н.Э. Баумана. Электр. журнал. 2013. № 2. Режим доступа: http://sntbul.bmstu.ru/doc/551948.html (дата обращения 01.05.2015).
  4. LaValle S.M. Motion Planning // IEEE Robotics & Automation Magazine. 2011. Vol. 18, no. 1. P. 79-89. DOI: 10.1109/MRA.2011.940276
  5. Lee D., Shim D.H. RRT-Based Path Planning for Fixed-Wing UAVs with Arrival Time and Approach Direction Constraints // Proc. of 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, May 27-30, 2014. P. 317-328.
  6. De Filippis L., Guglieri G., Quagliotti F. Path Planning Strategies for UAVS in 3D Environments // Journal of Intelligent and Robotic Systems. 2012. Vol. 65, no. 1-4. P. 247-264. DOI:10.1007/s10846-011-9568-2
  7. Kamyar K., Taheri E. Aircraft Optimal Terrain/Threat-Based Trajectory Planning and Control // Journal of Guidance, Control, and Dynamics. 2014. Vol. 37, no. 2. P. 466-483. DOI: 10.2514/1.61339
  8. Williams P. Three-Dimensional Aircraft Terrain-Following via Real-Time Optimal Control // Journal of Guidance, Control, and Dynamics. 2012. Vol. 30, no. 4. P. 1201-1206. DOI:10.2514/1.29145
  9. Malaek S., Kosari A. Novel Minimum Time Trajectory Planning in Terrain Following Flights // IEEE Transactions on Aerospace and Electronic Systems. 2007. Vol. 43, no. 1. P. 2-12. DOI:10.1109/TAES.2007.357150
  10. Zhan W., Wang W., Chen N., Wang Ch. Efficient UAV Path Planning with Multiconstraints in a 3D Large Battlefield Environment // Mathematical Problems in Engineering. 2014. Vol. 2014. Article ID 597092. DOI: 10.1155/2014/597092
  11. Bestaoui Y. 3D flyable curves for an autonomous aircraft // 9th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences (ICNPAA 2012), Vienna, Austria, July 2012, Vol. 1493. Р. 132-139. DOI: 10.1063/1.4765481
  12. Shanmugavel M., Tsourdos A., White B.A., Zbikowski R. Differential Geometric Path Planning of Multiple UAVs // Trans. ASME. Journal of Dynamic Systems Measurement and Control. 2005. Vol. 129, no. 5. Р. 620-632. DOI:10.1115/1.2767657
  13. Pan J., Zhang Liangjun, Manocha D. Collision-free and smooth trajectory computation in cluttered environments // The International Journal of Robotics Research. 2012. Vol. 31, no. 10. P. 1155-1175. DOI:10.1177/0278364912453186
  14. Sujit P.B., Saripalli S., Sousa J.B. Unmanned Aerial Vehicle Path Following: A Survey and Analysis of Algorithms for Fixed-Wing Unmanned Aerial Vehicles // IEEE Control System Magazine. 2014. Vol. 34, no. 1. P. 42-59. DOI: 10.1109/MCS.2013.2287568
  15. Крищенко А.П. Стабилизация программных движений нелинейных систем // Известия АН СССР. Техническая кибернетика. 1985. № 6. С. 108-112.
  16. Крищенко А.П. Синтез алгоритмов терминального управления для нелинейных систем // Известия РАН. Теория и системы управления. 1994. № 1. С. 48-57.
  17. Горбатенко С.А., Макашов Э.М., Полушкин Ю.Ф., Шефтель А.В. Механика полета: Справочник. М.: Машиностроение, 1989. 420 с.
  18. Канатников А.Н., Шмагина Е.А. Задача терминального управления движением летательного аппарата // Нелинейная динамика и управление: сб. ст. Вып. 7 / под ред. С.В. Емельянова, С.К. Коровина. М.: ФИЗМАТЛИТ, 2010. С. 79-94.
  19. Велищанский М.А. Синтез квазиоптимальной траектории движения беспилотного летательного аппарата // Наука и образование. МГТУ им. Н.Э. Баумана. Электр. журнал. 2013. № 12. С. 417-430. DOI: 10.7463/1213.0646471
  20. Канатников А.Н., Крищенко А.П. Терминальное управление пространственным движением летательных аппаратов // Известия РАН. Теория и системы управления. 2008. № 5. C. 51-64.
  21. Крищенко А.П., Канатников А.Н., Ткачев С.Б. К задаче построения траектории и управления движением летательных аппаратов // Проблемы нелинейного анализа в инженерных системах. 2010. Т. 16, № 2 (34). С. 88-103.
  22. Канатников А.Н. Построение траекторий летательных аппаратов с немонотонным изменением энергии // Наука и образование. МГТУ им. Н.Э. Баумана. Электр. журнал. 2013. № 4. С. 107-122. DOI: 10.7463/0413.0554666
  23. Канатников А.Н., Крищенко А.П., Ткачев С.Б. Допустимые пространственные траектории беспилотного летательного аппарата в вертикальной плоскости // Наука и образование. МГТУ им. Н.Э. Баумана. Электр. журнал. 2012. № 3. Режим доступа: http://technomag.bmstu.ru/doc/367724.html (дата обращения 01.05.2015).

 

Поделиться:
 
ПОИСК
 
elibrary crossref neicon rusycon
 
ЮБИЛЕИ
ФОТОРЕПОРТАЖИ
 
СОБЫТИЯ
 
НОВОСТНАЯ ЛЕНТА



Авторы
Пресс-релизы
Библиотека
Конференции
Выставки
О проекте
Rambler's Top100
Телефон: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
  RSS
© 2003-2018 «Математика и Математическое моделирование» Тел.: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)